4x(3x^2-7x-16)=

Simple and best practice solution for 4x(3x^2-7x-16)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(3x^2-7x-16)= equation:


Simplifying
4x(3x2 + -7x + -16) = 0

Reorder the terms:
4x(-16 + -7x + 3x2) = 0
(-16 * 4x + -7x * 4x + 3x2 * 4x) = 0
(-64x + -28x2 + 12x3) = 0

Solving
-64x + -28x2 + 12x3 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '4x'.
4x(-16 + -7x + 3x2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor 'x' equal to zero and attempt to solve: Simplifying x = 0 Solving x = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x = 0

Subproblem 2

Set the factor '(-16 + -7x + 3x2)' equal to zero and attempt to solve: Simplifying -16 + -7x + 3x2 = 0 Solving -16 + -7x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -5.333333333 + -2.333333333x + x2 = 0 Move the constant term to the right: Add '5.333333333' to each side of the equation. -5.333333333 + -2.333333333x + 5.333333333 + x2 = 0 + 5.333333333 Reorder the terms: -5.333333333 + 5.333333333 + -2.333333333x + x2 = 0 + 5.333333333 Combine like terms: -5.333333333 + 5.333333333 = 0.000000000 0.000000000 + -2.333333333x + x2 = 0 + 5.333333333 -2.333333333x + x2 = 0 + 5.333333333 Combine like terms: 0 + 5.333333333 = 5.333333333 -2.333333333x + x2 = 5.333333333 The x term is -2.333333333x. Take half its coefficient (-1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. -2.333333333x + 1.361111112 + x2 = 5.333333333 + 1.361111112 Reorder the terms: 1.361111112 + -2.333333333x + x2 = 5.333333333 + 1.361111112 Combine like terms: 5.333333333 + 1.361111112 = 6.694444445 1.361111112 + -2.333333333x + x2 = 6.694444445 Factor a perfect square on the left side: (x + -1.166666667)(x + -1.166666667) = 6.694444445 Calculate the square root of the right side: 2.587362449 Break this problem into two subproblems by setting (x + -1.166666667) equal to 2.587362449 and -2.587362449.

Subproblem 1

x + -1.166666667 = 2.587362449 Simplifying x + -1.166666667 = 2.587362449 Reorder the terms: -1.166666667 + x = 2.587362449 Solving -1.166666667 + x = 2.587362449 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = 2.587362449 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = 2.587362449 + 1.166666667 x = 2.587362449 + 1.166666667 Combine like terms: 2.587362449 + 1.166666667 = 3.754029116 x = 3.754029116 Simplifying x = 3.754029116

Subproblem 2

x + -1.166666667 = -2.587362449 Simplifying x + -1.166666667 = -2.587362449 Reorder the terms: -1.166666667 + x = -2.587362449 Solving -1.166666667 + x = -2.587362449 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = -2.587362449 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = -2.587362449 + 1.166666667 x = -2.587362449 + 1.166666667 Combine like terms: -2.587362449 + 1.166666667 = -1.420695782 x = -1.420695782 Simplifying x = -1.420695782

Solution

The solution to the problem is based on the solutions from the subproblems. x = {3.754029116, -1.420695782}

Solution

x = {0, 3.754029116, -1.420695782}

See similar equations:

| x^2+70x-144=0 | | 10+3(5x-2)=7(2x-1)+9 | | t(3t-20)=-12 | | 14y=-34 | | 4x(2x+3)=36 | | 7y^2-16y-28=0 | | 13m=5 | | 48x^2+14-45=0 | | 48x^2+14=45 | | 4x^2=28x-49 | | 1+8x=11-2x | | 10y^2=-5y | | 4x+2x=-30 | | 6(x-1)-(x-2)=-18 | | -17-5x=13-8x | | 5x^2+18x=-32-8x | | t^2=9t | | 3.5x-4=2.5x | | 14x^2+51x=54 | | 28(a-2)+21=12a+61 | | x^3+8x=-6x^2 | | 36x^2+60x=-25 | | 7x+2=6x | | 65=3x-5 | | -6x+14=7x-12 | | (3n-12)=6 | | y=(x+6)(x-7) | | x^4+-29x^2+100=0 | | (-3n)/5-6=0 | | 18x^2=12+15x | | 4x+17=3(x+1)+21 | | (3n-20)/2=11 |

Equations solver categories